博客
关于我
格林函数一阶常微分方程方法介绍
阅读量:239 次
发布时间:2019-03-01

本文共 563 字,大约阅读时间需要 1 分钟。

从物理问题入手,我们可以分析一个静止在具有正比于速度的粘滞阻力的地面上的物体,在受到冲击后物体的速度变化情况。这个问题可以用以下微分方程描述:

m dv/dt + α v = δ(t - t')

在时刻t'之后,v的方程为:

v(t) = (1/m) * e^(-α/m (t - t'))

这个解被称为系统的格林函数,记作G(t, t')。通过将这个解与线性系统的特性结合,我们可以推导出,对于任意方程:

m dv/dt + α v = F(t)

系统的解可以形式化地表示为:

v(t) = ∫_{t0}^{t} G(t, t') F(t') dt'

特别地,当F(t)为常数时,可以通过积分直接计算出结果。这个解在电路理论中有广泛的应用,类似于RL电路中的暂态过程。

在解决考研数学题目时,我们可以借鉴上述方法。例如,考虑方程:

y'(x) + y = f(x)

当f(x) = x时,方程的特解为y = x - 1。

对于第二小题,若f(x)是周期为T的周期函数,我们可以证明方程存在唯一的周期为T的解。具体来说,方程的解满足:

y(x + T) = y(x)

这表明解具有周期性,且为唯一的周期解。

通过上述方法,我们可以系统地解决线性微分方程问题。这种方法不仅适用于物理问题,也在工程和数学领域中具有广泛的应用价值。

转载地址:http://uahv.baihongyu.com/

你可能感兴趣的文章
Objective-C实现BellmanFord贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现bezier curve贝塞尔曲线算法(附完整源码)
查看>>
Objective-C实现bfs 最短路径算法(附完整源码)
查看>>
Objective-C实现BF算法 (附完整源码)
查看>>
Objective-C实现Bilateral Filter双边滤波器算法(附完整源码)
查看>>
Objective-C实现binary exponentiation二进制幂运算算法(附完整源码)
查看>>
Objective-C实现binary search二分查找算法(附完整源码)
查看>>
Objective-C实现binary tree mirror二叉树镜像算法(附完整源码)
查看>>
Objective-C实现binary tree traversal二叉树遍历算法(附完整源码)
查看>>
Objective-C实现BinarySearchTreeNode树算法(附完整源码)
查看>>
Objective-C实现binarySearch二分查找算法(附完整源码)
查看>>
Objective-C实现binomial coefficient二项式系数算法(附完整源码)
查看>>
Objective-C实现binomial distribution二项分布算法(附完整源码)
查看>>
Objective-C实现bisection二分法算法(附完整源码)
查看>>
Objective-C实现bisection二等分算法(附完整源码)
查看>>
Objective-C实现BitMap算法(附完整源码)
查看>>
Objective-C实现bitmask位掩码算法(附完整源码)
查看>>
Objective-C实现bitonic sort双调排序算法(附完整源码)
查看>>
Objective-C实现BloomFilter布隆过滤器的算法(附完整源码)
查看>>
Objective-C实现BMP图像旋转180度(附完整源码)
查看>>